The scenario: park furnishings manufactures school and university

DEADLINE 48 HOURS

SHOW ALL THE WORKING STEP BY STEP PLEASE

ALSO POST THE ANSWERS ON THE SPACES PROVIDED BUT THE WORKING MUST BE PROVIDED IN A SEPARATE DCUMENT AS WELL AS THE SCETCHES

The scenario

You can check Chegg  for examples as i saw the they have completed the question but using different figures. But the work must be with no plagiarism and should be to the point

Park Furnishings manufactures school and university classroom furniture. The company has two production plants, located at Easton and Weston. The Easton plant produce tables and chairs and the Weston plant produces desks and computer workstations. Park has a working day of 7.5 hours and employs twenty workers at each plant. You may assume that there is a total of 24 working days every month.

All Park products are manufactured using finished pressed wood and polished aluminium fittings. Including scrap, each table and desk uses 20 m2 of pressed wood whereas each chair and workstation needs 12.5 m2 and 30 m2 respectively. A total of 240000 m2 of pressed wood is available each month and is divided equally between the two plants. The aluminium fittings that reinforce the legs of all the production items are purchased from an outside supplier. Each plant can purchase up to 9500 boxes of fittings per month and one box is required for every item of furniture produced. Production times are 72 minutes per table, 18 minutes per chair, 90 minutes per desk and 2 hours per workstation.

The unit profit for chairs and tables are £39 and £72 respectively, whereas each desk and workstation generates profits of £105 and £142 respectively.

Park is considering combining operations of both plants into a single factory. This consolidation will have the advantage of combining all available production resources as well as reducing administration costs by £1420 per month; however they have estimated that the cost of renovating and equipping the factory will be £1100000. Due to the current financial position Park Furnishings is only prepared to go ahead with the combined operation if it saves money in the first year of operation.

  

Let

· x1 represent the number of tables made per month;

· x2 represent the number of chairs made per month;

· x3 represent the number of desks made per month;

· x4 represent the number of workstations made per month;

where x1,x2,x3,x4 ≥0

  

(a) Easton

Enter the constraints for the Easton plant and the expression to be optimised.

Maximise:  x1 +  x2

subject to

x1 +  x2≤      [Wood]

x1 +  x2≤      [Metal fittings]

x1 +  x2≤     [Labour]

Sketch the constraints and hence find the values of

· (i) a,b,c, the intersections of the Wood, Metal Fittings and Labour constraint respectively with the x1-axis;

· (ii) d,e,f,the intersections of the Wood, Metal Fittings and Labour constraint respectively with the x2-axis;

Enter the values, to the nearest integer in the appropriate boxes below:

Enter a:
Enter b:
Enter c:
Enter d:
Enter e:
Enter f: 

Now draw a sample profit line on your graph. Choose a value of the profit (P>0) and using this value, find the values of

(i) g, the intersection of your sample profit line with the x1x1-axis;

(ii) h, the intersection of your sample profit line with the x2x2-axis;

Enter the values, to the nearest integer in the appropriate boxes below:

Enter P:
Enter g:
Enter h:

 

Determine the optimal solution for x1 and x2 to the nearest integer and the profit that this solution will generate and enter your solution below.

The optimal solution is x1=  ,     x2= 

Profit: £ 

Select the two constraints which intersect to give the optimal solution.

The optimal solution is the intersection of   Select Wood Metal Fittings Labour x1 ≥ 0 x2 ≥ 0  with   Select Wood Metal Fittings Labour x1 ≥ 0 x2 ≥ 0 

  

(b) Weston

Enter the constraints for the Weston plant and the expression to be optimised.

Maximise:  x3 +  x4

subject to

x3 +  x4≤      [Wood]

x3 +  x4≤      [Metal fittings]

x3 +  x4≤      [Labour]

Sketch the constraints and hence find the values of

· (i) a,b,c, the intersections of the Wood, Metal Fittings and Labour constraint respectively with the x3-axis;

· (ii) d,e,f, the intersections of the Wood, Metal Fittings and Labour constraint respectively with the x4-axis;

Enter the values, to the nearest integer in the appropriate boxes below:

Enter a:
Enter b:
Enter c:
Enter d:
Enter e:
Enter f: 

Now draw a sample profit line on your graph. Choose a value of the profit (P>0) and using this value, find the values of

· (i) g, the intersection of your sample profit line with the x3x3-axis;

· (ii) h, the intersection of your sample profit line with the x4x4-axis;

Enter the values, to the nearest integer in the appropriate boxes below:

Enter P:
Enter g:
Enter h:

 

Determine the optimal solution for x3 and x4 to the nearest integer and the profit that this solution will generate and enter your solution below.

The optimal solution is x3=  ,     x4= 

Profit: £ 

Select the two constraints which intersect to give the optimal solution.

The optimal solution is the intersection of   Select Wood Metal Fittings Labour x3 ≥ 0 x4 ≥ 0  with   Select Wood Metal Fittings Labour x3 ≥ 0 x4 ≥ 0 

  

(c) Combined

Enter the constraints for combining the plants and the expression to be optimised.

Maximise:  x1 +  x2 +  x3 +  x4

subject to

x1 +  x2+  x3 +  x4≤   [Wood]

x1 +  x2+  x3 +  x4≤  [Metal fittings]

x1 +  x2+  x3 +  x4≤  [Labour]

Determine the optimal solution for x1,x2,x3,and x4 and the profit that this solution will generate and enter your solution below. ( Enter the optimal solution correct to 3dp and the profit to the nearest pound.)

The optimal solution is x1=  ,     x2=  ,     x3=  ,     x4= 

Profit: £ 

Is it economically sensible to combine the two plants?   Select Yes No I do not know 

Pay for Essay
Calculate your paper price
Pages (550 words)
Approximate price: -

Why Work with Us

Top Quality and Well-Researched Papers

We always make sure that writers follow all your instructions precisely. You can choose your academic level: high school, college/university or professional, and we will assign a writer who has a respective degree.

Professional and Experienced Academic Writers

We have a team of professional writers with experience in academic and business writing. Many are native speakers and able to perform any task for which you need help.

Free Unlimited Revisions

If you think we missed something, send your order for a free revision. You have 10 days to submit the order for review after you have received the final document. You can do this yourself after logging into your personal account or by contacting our support.

Prompt Delivery and 100% Money-Back-Guarantee

All papers are always delivered on time. In case we need more time to master your paper, we may contact you regarding the deadline extension. In case you cannot provide us with more time, a 100% refund is guaranteed.

Original & Confidential

We use several writing tools checks to ensure that all documents you receive are free from plagiarism. Our editors carefully review all quotations in the text. We also promise maximum confidentiality in all of our services.

24/7 Customer Support

Our support agents are available 24 hours a day 7 days a week and committed to providing you with the best customer experience. Get in touch whenever you need any assistance.

Try it now!

Calculate the price of your order

Total price:
$0.00

How it works?

Follow these simple steps to get your paper done

Place your order

Fill in the order form and provide all details of your assignment.

Proceed with the payment

Choose the payment system that suits you most.

Receive the final file

Once your paper is ready, we will email it to you.

Our Services

No need to work on your paper at night. Sleep tight, we will cover your back. We offer all kinds of writing services.

Essays

Essay Writing Service

No matter what kind of academic paper you need and how urgent you need it, you are welcome to choose your academic level and the type of your paper at an affordable price. We take care of all your paper needs and give a 24/7 customer care support system.

Admissions

Admission Essays & Business Writing Help

An admission essay is an essay or other written statement by a candidate, often a potential student enrolling in a college, university, or graduate school. You can be rest assurred that through our service we will write the best admission essay for you.

Reviews

Editing Support

Our academic writers and editors make the necessary changes to your paper so that it is polished. We also format your document by correctly quoting the sources and creating reference lists in the formats APA, Harvard, MLA, Chicago / Turabian.

Reviews

Revision Support

If you think your paper could be improved, you can request a review. In this case, your paper will be checked by the writer or assigned to an editor. You can use this option as many times as you see fit. This is free because we want you to be completely satisfied with the service offered.